Menu
  • Publish Your Research/Review Articles in our High Quality Journal for just USD $99*+Taxes( *T&C Apply)

Research Article

Assessment of Soluble Humus Hydrolysate from Flammulina Velutipes Waste Post Molecular Sieving as Nutrient Stabilizer

Hsiao-Dao Chang*, Song-Jang Chen, Chih-Kuei Chen, Chi-Ming Yang and Chao-Ying Chen

Corresponding Author: Hsiao-Dao Chang, Ph.D. M.S, Agriculture Chemistry, Bio-Chemistry, Safety, Health and Environmental Engineering, Ming-Chi University of Technology, Taiwan

Received: February 10, 2021 ;    Revised: March 28, 2021 ;    Accepted: March 31, 2021

Citation: Chang HD, Chen SJ, Chen CK, Yang CM & Chen CY. (2021) A Assessment of Soluble Humus Hydrolysate from Flammulina Velutipes Waste Post Molecular Sieving as Nutrient Stabilizer. Adv Biotechnol Biopro Res, 1(1): 1-13.

Copyrights: ©2021 Chang HD, Chen SJ, Chen CK, Yang CM & Chen CY. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Share Your Publication :

Views & Citations

4165

Likes & Shares

0


Global Views

  • Abstract
  • Full Text
  • Images
  • Tables
  • References
  • PDF
  • Supplementary Files

The mineralization of biological waste usually needs years of hydrolytic time for dealing degradation and reformation into humus matter for stabilization of microbial community in soil and regulation of nutrient release. In this study, recovery of small, soluble humus hydrolysate (SHH) from Flammulina compost via chemical, acid catalysis had achieved in a new way. The shredded the mushroom fermented waste was further shredded, Acid’s catalysis hydrolysis (sulfuric acid / catalyst) under steam heating with only 46 min. A harvest pool of 5-45 kDa molecular sieving harvested as SHH, these 30 % of active melanoid collected shown effective for soil conditioning and in providing higher nutrient needed for sunflower nourishing to full seedling maturation stage. It showed more promising as ever compared to compost fertilizer result with only half of its growth. FTIR spectrum indicated multi-functional peak appeared when bonding broken. While reduce ring size, with unique adsorption band - 370 ~ 490 nm exerted important for evaluation of existence and quality for melanoid product. Also, SHH could intimately with EM when combined used in spreading after mid cultivation stage. Among consortia combined in the fertigation, photosynthetic as the best for fertility effect resulted, from seedling to ripe fruiting. These finding indicate the chemical hydrolytic way might perceived to be an important route for fasten productivity for production an effective organic matter for soil restoration, environmental restoration for sustainability.

Keywords: Acid catalytic hydrolysate, Soluble humus hydrolysate, Effective micro-organisms, Photosynthetic microbes, Plant growth promotion


Mpgyi